Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 55: 76-84, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31226348

RESUMO

Monoterpene indole alkaloids (MIAs) from plants encompass a broad class of structurally complex and medicinally valuable natural products. MIAs are biologically derived from the universal precursor strictosidine. Although the strictosidine biosynthetic pathway has been identified and reconstituted, extensive work is required to optimize production of strictosidine and its precursors in yeast. In this study, we engineered a fully integrated and plasmid-free yeast strain with enhanced production of the monoterpene precursor geraniol. The geraniol biosynthetic pathway was targeted to the mitochondria to protect the GPP pool from consumption by the cytosolic ergosterol pathway. The mitochondrial geraniol producer showed a 6-fold increase in geraniol production compared to cytosolic producing strains. We further engineered the monoterpene-producing strain to synthesize the next intermediates in the strictosidine pathway: 8-hydroxygeraniol and nepetalactol. Integration of geraniol hydroxylase (G8H) from Catharanthus roseus led to essentially quantitative conversion of geraniol to 8-hydroxygeraniol at a titer of 227 mg/L in a fed-batch fermentation. Further introduction of geraniol oxidoreductase (GOR) and iridoid synthase (ISY) from C. roseus and tuning of the relative expression levels resulted in the first de novo nepetalactol production. The strategies developed in this work can facilitate future strain engineering for yeast production of later intermediates in the strictosidine biosynthetic pathway.


Assuntos
Engenharia Metabólica , Microrganismos Geneticamente Modificados , Mitocôndrias , Monoterpenos/metabolismo , Saccharomyces cerevisiae , Alcaloides de Vinca/biossíntese , Catharanthus/enzimologia , Catharanthus/genética , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Curr Opin Biotechnol ; 60: 72-81, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30772756

RESUMO

Mutated RNA splicing machinery drives many human diseases and is a promising therapeutic target for engineering and small molecule therapy. In the case of mutations in individual genes that cause them to be incorrectly spliced, engineered splicing factors can be introduced to correct splicing of these aberrant transcripts and reduce the effects of the disease phenotype. Mutations that occur in certain splicing factor genes themselves have been implicated in many cancers, particularly myelodysplastic syndromes. Small molecules that target splicing factors have been developed as therapies to preferentially induce apoptosis in these cancer cells. Specifically, drugs targeting the splicing factor SF3B1 have led to recent clinical trials. Here, we review the role of alternative splicing in disease, approaches to rescue incorrect splicing using engineered splicing factors, and small molecule splicing inhibitors developed to treat hematological cancers.


Assuntos
Spliceossomos , Humanos , Mutação , Síndromes Mielodisplásicas , Fosfoproteínas , Splicing de RNA , Fatores de Processamento de RNA
3.
Metab Eng ; 44: 117-125, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28939278

RESUMO

Monoterpene indole alkaloids (MIAs) represent a structurally diverse, medicinally essential class of plant derived natural products. The universal MIA building block strictosidine was recently produced in the yeast Saccharomyces cerevisiae, setting the stage for optimization of microbial production. However, the irreversible reduction of pathway intermediates by yeast enzymes results in a non-recoverable loss of carbon, which has a strong negative impact on metabolic flux. In this study, we identified and engineered the determinants of biocatalytic selectivity which control flux towards the iridoid scaffold from which all MIAs are derived. Development of a bioconversion based production platform enabled analysis of the metabolic flux and interference around two critical steps in generating the iridoid scaffold: oxidation of 8-hydroxygeraniol to the dialdehyde 8-oxogeranial followed by reductive cyclization to form nepetalactol. In vitro reconstitution of previously uncharacterized shunt pathways enabled the identification of two distinct routes to a reduced shunt product including endogenous 'ene'-reduction and non-productive reduction by iridoid synthase when interfaced with endogenous alcohol dehydrogenases. Deletion of five genes involved in α,ß-unsaturated carbonyl metabolism resulted in a 5.2-fold increase in biocatalytic selectivity of the desired iridoid over reduced shunt product. We anticipate that our engineering strategies will play an important role in the development of S. cerevisiae for sustainable production of iridoids and MIAs.


Assuntos
Iridoides/metabolismo , Engenharia Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Curr Opin Biotechnol ; 42: 74-83, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26994377

RESUMO

The explosion of genomic sequence data and the significant advancements in synthetic biology have led to the development of new technologies for natural products discovery and production. Using powerful genetic tools, the yeast Saccharomyces cerevisiae has been engineered as a production host for natural product pathways from bacterial, fungal, and plant species. With an expanding library of characterized genetic parts, biosynthetic pathways can be refactored for optimized expression in yeast. New engineering strategies have enabled the increased production of valuable secondary metabolites by tuning metabolic pathways. Improvements in high-throughput screening methods have facilitated the rapid identification of variants with improved biosynthetic capabilities. In this review, we focus on the molecular tools and engineering strategies that have recently empowered heterologous natural product biosynthesis.


Assuntos
Produtos Biológicos/metabolismo , Vias Biossintéticas , Biotecnologia/métodos , Saccharomyces cerevisiae/metabolismo , Vias Biossintéticas/genética , Genômica , Plasmídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...